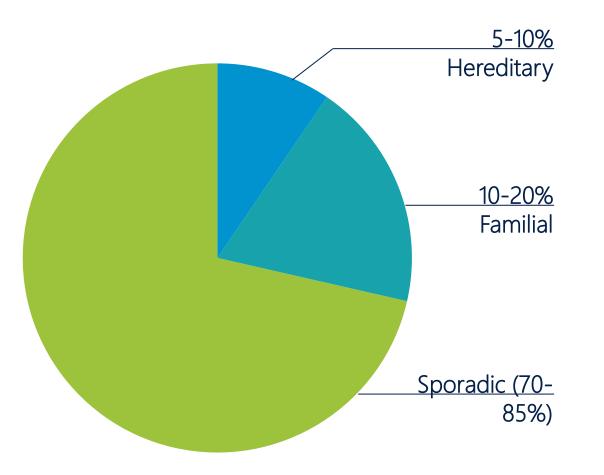
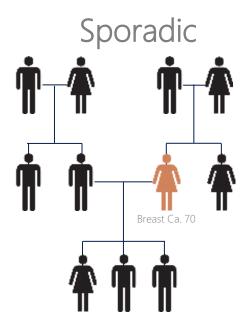


Genetics of Neuroendocrine Tumors: When to think of it


World NEN Lives 2020 Patient Virtual Conference

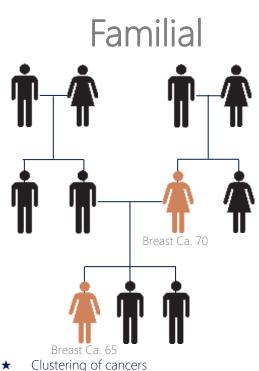
Emily Bergsland, MD

9/24/20

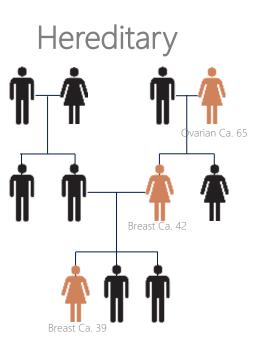

- How much cancer is hereditary?
- What is a mutation?
- How do you test for germline alterations?
- Neuroendocrine tumor genetics and syndromes

Most cancer is sporadic, i.e. not inherited

Comprehensive Cancer Center


M. Dhawan, UCSF

- ★ Single affected individual
- \star Average or older for that type of cancer
- ★ Relatives usually at no increased risk

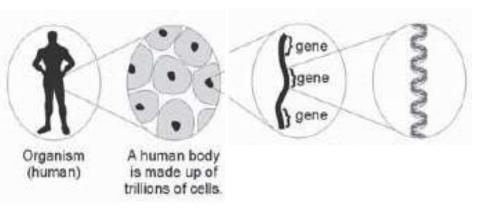

Direct Exposures (smoking, chemicals, radiation, etc)

Unknown factors

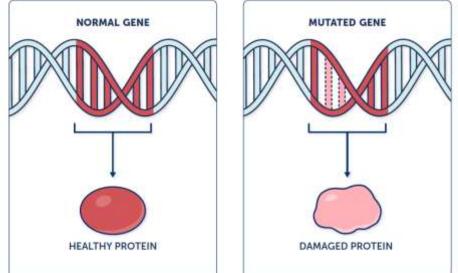
- ★ Average or older for that type of cancer
- ★ Relatives at moderately increased risk

Genes + Environment (same diet, lifestyle, environment, + shared genetic background)

- \star Multiple affected individuals
- ★ Younger than average age of onset for that cancer type
- \star Multiple generations
- \star Can test for single gene mutation


Caused by a single gene mutation

Comprehensive Cancer Center


M. Dhawan, UCSF

What is a mutation?

In every cell we have ~20,000 different genes

- A gene =functional unit of heredity. Genes are made up of DNA.
- Some genes act as <u>instructions</u> to make molecules called proteins.
- Mutation = permanent alteration in the DNA sequence of a gene, such that it differs from what is found in most people

- Sometimes, gene mutations cause proteins to malfunction or to be missing entirely.
- When a mutation alters a protein that plays a critical role in the body, it can disrupt normal development or cause a medical condition (like cancer).

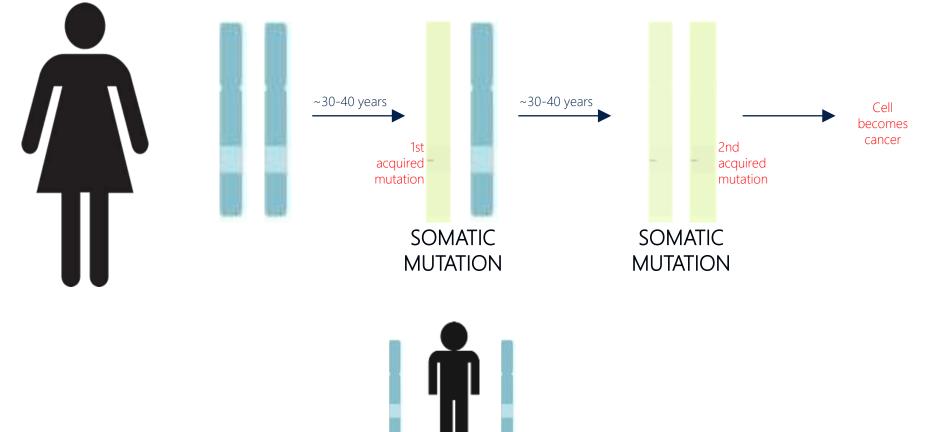
Comprehensive Cancer Center

M. Dhawan, UCSF https://ghr.nlm.nih.gov/primer/basics/gene

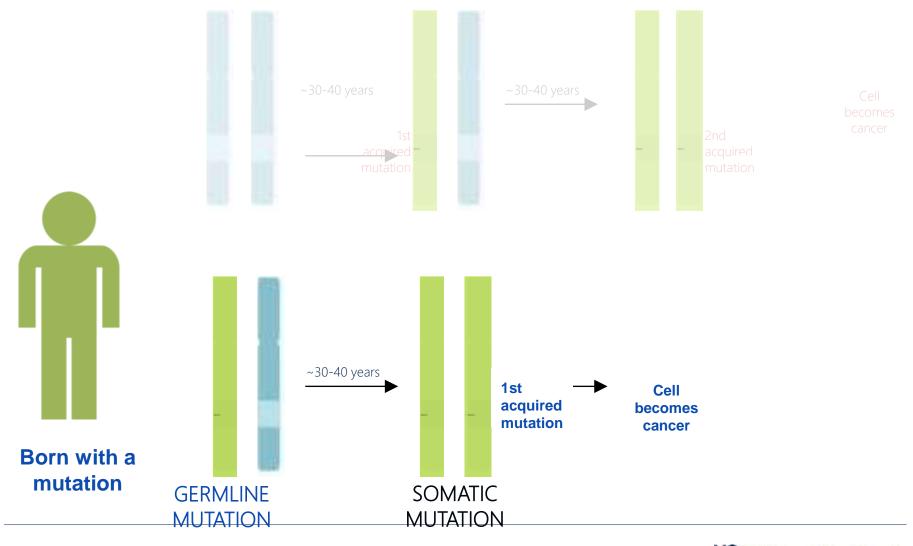
Mutations: 2 kinds

Hereditary

- inherited from a parent and are present throughout a person's life in virtually every cell in the body
- also called germline mutations because they are present in the parent's egg or sperm cells, which are also called germ cells.

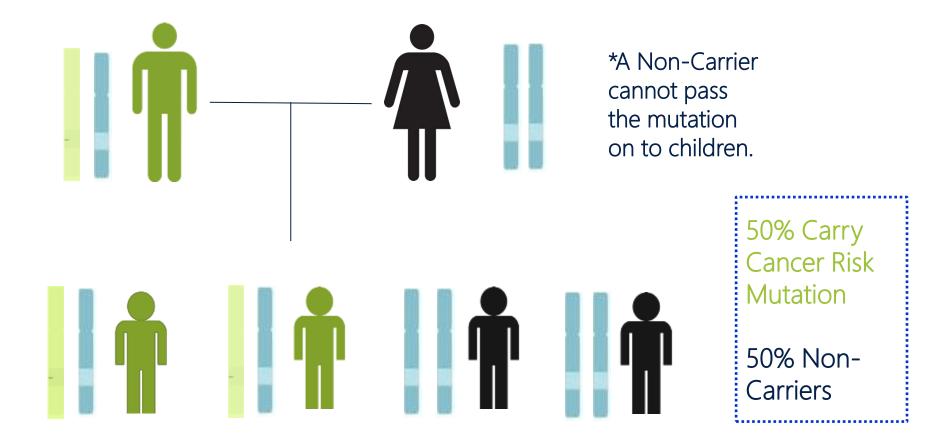

Acquired (or somatic)

- mutations occur at some time during a person's life and are present only in certain cells, not in every cell in the body.
- can be caused by environmental factors such as ultraviolet radiation from the sun, or can occur if an error is made as DNA copies itself during cell division.
- Can't be passed to the next generation


https://ghr.nlm.nih.gov/primer/mutationsanddisorders/genemutation

Helen Diller Family Comprehensive Cancer Center

Sporadic (most common) cancer formation:


Hereditary cancer formation:

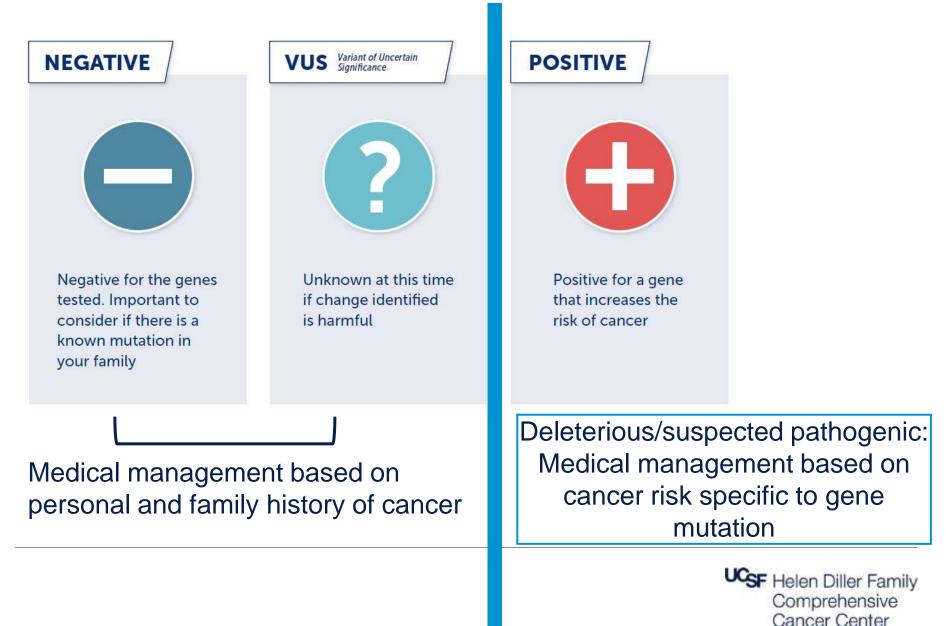
M. Dhawan, UCSF

Dominant Inheritance

One Parent has the genetic mutation

How do you test for germline mutations?

We can test with saliva or blood



Single gene or multigene panel

Comprehensive Cancer Center

M. Dhawan, UCSF

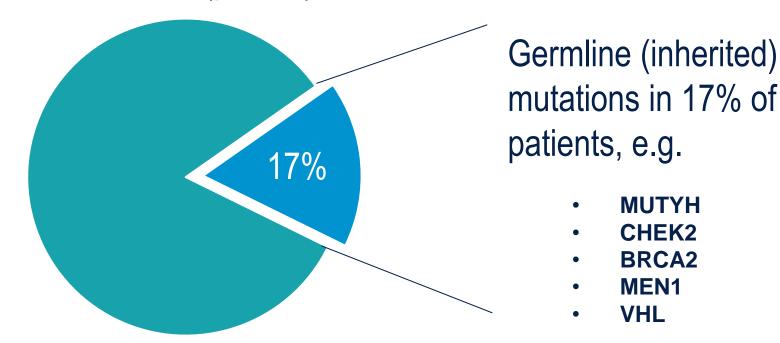
There are 3 possible results

Benefits, Risks and Limitations of Testing

Benefits

- provides explanation for cancer
- results may inform medical management (screening, treatment)
- may provide information for family members

Risks


- psychological impact (pathogenic mutation, VUS)
- normal result could give false reassurance
- Potential for insurance/employment discrimination

Limitations

- Negative result most helpful when a familial mutation is known
- Testing may not pick up all known alterations
- Significance of VUS
 unclear

Genetic syndromes and NETs

Pancreatic Neuroendocrine Tumors (pNETs)

GERMLINE TESTING: if multiple panNET or feature of another syndrome is present

Scarpa, et al. Nature, 2017; Hampel et al. Genetics in Medicine, 2015

UCSF Helen Diller Family Comprehensive Cancer Center

MUTYH

CHEK2 **BRCA2**

MEN1

VHL

Paraganglioma/pheochromocytoma

Pheochromocytoma/Paragangliomas (PPGL)

- Autosomal dominant
 - Prevalence 1:36,000
- Paragangliomas- NET of the head, neck, chest, or abdomen
- Pheochromocytomas- arise in adrenal gland (medulla)
- Some tumors associated with catecholamine excess (sweating, rapid heart rate, high blood pressure)

Pheochromocytoma/Paragangliomas (PPGL)

- >40% attributed to germline alteration
 - Of these, 80% from alteration in SDHx or VHL
 - Many other genes implicated
- Syndromes varymutation, site of origin, hormone production and other features
- Germline testing indicated in all patients

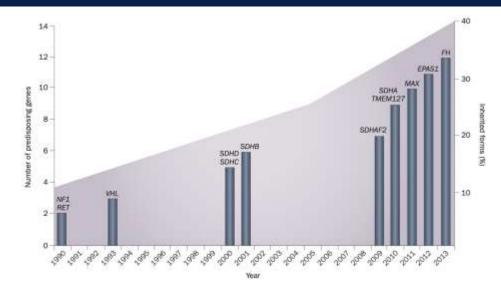


Figure 1 | Timescale of the discovery of PPGL susceptibility genes. The cumulative number of susceptibility genes and the year of identification for each of them are illustrated by the histograms. The curve highlights the increase in the percentage of known inherited forms of PPGL through time. Abbreviation: PPGL, phaeochromocytoma and/or paraganglioma.

UCSF Helen Diller Family Comprehensive Cancer Center

Pheochromocytoma/Paragangliomas (PPGL)

Table 1 | Genes and diseases

Disease (phenotype MIM numbers)	Genes	Mutation rate (%)*	Main features
Neurofibromatosis type 1 (162200)	NF1	3	Café-au-lait spots, neurofibromas, axillary and inguinal freckling, Lisch nodules, osseous lesions, optic gliomas, mainly phaeochromocytomas
Multiple endocrine neoplasia type 2 (171400; 162300)	RET	6	2A: Medullary thyroid cancer, primary hyperparathyroidism, PPGL 2B: Medullary thyroid cancer, PPGL, Marfanoid habitus, mucocutaneous neuromas, gastrointestinal ganglioneuromatosis
von Hippel–Lindau disease (193300)	VHL	7	Central nervous system or retinal haemangioblastomas, renal cell carcinoma, PPGL, pancreatic neuroendocrine tumours and cysts, endolymphatic sac tumours, papillary cystadenoma of the epididymis and broad ligament
Hereditary paragangliomas (168000; 605373; 115310; 601650; 614165)	SDHx genes: SDHB SDHD SDHC SDHA SDHAF2	10 9 1 <1 <0.1	PPGL, rare renal cancers, GIST PPGL, rare renal cancers, GIST PPGL, rare renal cancers, GIST PPGL, GIST Head and neck paraganglioma
Familial phaeochromocytomas (173300; 613403; 154950)	TMEM127 MAX	1 1	Mainly phaeochromocytomas, rare renal cancers Mainly PPGL
Polycythemia paraganglioma syndrome (603349)	EPAS1	1	Polycythemia, PPGL, somatostatinoma
Leiomyomatosis and renal cell cancer (150800)	FH	1	Cutaneous and uterine leiomyomas, type 2 papillary renal carcinoma, rare PPGL

*The mutation rate is the percentage of patients with PPGL with mutations in the gene concerned. Abbreviations: GIST, gastric stromal tumours; MIM, Mendelian Inheritance in Man; PPGL, paraganglioma and/or phaeochromocytoma.

Favier, et al. Nat Reviews Endocrinology, 2015

Helen Diller Family Comprehensive Cancer Center

Screening considerations: Familial and SDXrelated PPGL

- Physical examination with blood pressure monitoring every year
- Metanephrine level determination every year
- Whole-body MRI every 2 or 3 years
- Begin 5 years before youngest age of onset in family?

UCSF Helen Diller Family

Comprehensive

Cancer Center

• Begin 5 y/o (SDHB), 10 y/o (for other mutations)?

Favier, et al. Nat Reviews, 2015 Muth, et al JIM, 2018 Wong, et al. Clinical endocrinology, 2019

21 Presentation Title

Multiple Endocrine Neoplasia-Type 1 (MEN1)

- Autosomal dominant
- Prevalence 1-10/100,000
- Mutation in MEN1 gene in 95%
- Must have at least 2 classic (25% + germline):
 - Parathyroid adenoma -Typically benign
 - GI/pancreas NET
 - Well differentiated PanNET (gastrinoma, insulinoma)-20% gastrinoma germline
 - bronchial/thymic NET (carcinoids)
 - Pituitary tumor (seen in 90%, usually by 25 y/o)-prolactinoma most common
- OR 1st degree relative w MEN1, PTH adenoma before age 30 (or more than one), 2+ MEN1 tumors but not from classic triad
- Also-skin findings (angiofibromas, collagenomas, ffibromas)

Screening considerations for MEN1

- Screening begins between age 5-20
- parathyroid adenomas -blood tests (age 8)
- pituitary tumors -pituitary MRI every 3-5 yr (age 5)
- GI/panc neuroendocrine tumors and adrenal cancers (age 5-10)
 - blood tests
 - imaging with MRI/CT of the abdomen
- thoracic tumors chest (CT/MRI) imaging every 1-2 yr (age 15)
- Screening depends on local resources, clinical judgment and patient preferences

Comprehensive Cancer Center

Thakker, et al. JCEM, 2012

Multiple Endocrine Neoplasia Type 2 (MEN2)

- Autosomal Dominant
- Prevalence is 1:35,000
- Caused by mutations in the RET gene
- Medullary Thyroid Cancer (MTC)
- 3 subtypes:
- 1. MEN2A
- 2. MEN2B
- 3. Familial medullary thyroid carcinoma (FMTC)

MEN2 Subtypes

MEN2A (70-80%)	MEN2B (5%)	FMTC (10-20%) Familial Medullary Thyroid Cancer				
Hyperparathyroidism (20-30%)						
Pheochromo						
Medullary thyroid cancer (MTC)						
MTC in young adults	MTC in childhood	MTC in middle age				
+/- cutaneous lichen amyloidosis (CLA); pruritic CLA	 "marfanoid" body habitus Neuromas =lips, tongue, eyelid; Distinctive facial features/enlarged lips Diffuse ganglioneuromatosis of GI tract (84%) 					
		Comprehensive				

Cancer Center

MEN2 Testing & Screening recs: Depend on mutation

American Thyroid Association (ATA) Risk per RET Mutation

RET mutation ^a	Exon	MTC risk level ^b	Incidence of PHEO ^c	Incidence of HPTH ^c
G533C	8	MOD	+	—
C609F/G/R/S/Y	10	MOD	+/++	+
C611F/G/S/Y/W	10	MOD	+/++	+
C618F/R/S	10	MOD	+/++	+
C620F/R/S	10	MOD	+/++	+
C630R/Y	11	MOD	+/++	+
D631Y	11	MOD	+++	-
C634F/G/R/S/W/Y	11	Н	+++	++
K666E	11	MOD	+	-
E768D	13	MOD	100 A	-
L790F	13	MOD	+	_
V804L	14	MOD	+	+
V804M	14	MOD	+	+
A883F	15	Н	+++	. .
S891A	15	MOD	+	+
R912P	16	MOD		-
M918T	16	HST	+++	-

Screening– usually begins < age 5: ultrasound, RET testing, calcitonin (age of thyroidectomy also varies)

Multiple Endocrine Neoplasia Type 4 (MEN-4)

- Mimics MEN1
- Germline alteration of CDKN1B
- Parathyroid tumors
- Pituitary tumors
- Other endocrine gland tumors

Von Hippel Lindau (VHL)

Von Hippel-Lindau Syndrome (VHL)

- Autosomal Dominant
- Prevalence is 1:36,000
- Caused by mutations in the VHL gene
- Suspect if
 - Retinal (eye) angioma, especially in a young individual (benign)
 - Spinal or cerebellar hemangioblastoma (benign)
 - Pheochromocytoma
 - Kidney cancer (early onset or family history)
 - Neuroendocrine tumors of the pancreas (pNETS)
 - Multiple renal and pancreatic cysts
 - Endolymphatic sac tumors
 - Less commonly, multiple papillary cystadenomas of the epididymis or broad ligament

Screening considerations for VHL

- Ages 1-4: annual eye exam
- Starting at 5 years old: blood pressure measurements, dilated eye exams, annual plasma or 24 hr urine for metanephrines
- Starting at age 16: annual US of abdomen; MRI of brain/abdomen every 2 years

Other syndromes associated with NETs

- Neuroendocrine Tumors can by found in several other syndromes as well
 - Neurofibromatosis (NF1 or NF2)
 - Tuberous Sclerosis (TSC1 or TSC2)
 - Lynch syndrome (MLH1, MSH2, MSH6, MS2, EPCAM)
 - and others
- Overlap between syndromes

Genetic syndromes and NETS

NET	Syndrome	Test
Pancreas NETs (about 15% germline)	 MEN1 MEN4 Von Hippel Lindau (VHL) Neurofibromatosis type 1 (NF1) Tuberous sclerosis complex (TSC) CHEK2, BRAC2, MUTYH 	 If multiple or another feature of a syndrome Gastrinoma
GI NETs (rare)	 VHL MEN1 (MEN4) NF1 (duodenal somatostatinoma) 	 If another feature of syndrome
Lung/thymic NETs (rare)	• MEN1 (MEN4)	
Pheochromocytoma/ Paraganglioma (PPGL) (about 35-40% germline)	 Von Hippel Lindau MEN2 Other hereditary PPGL syndromes (e.g. succinate dehydrogenase syndromes, SDHx-and others) 	Every patient
Medullary thyroid cancer (MTC) (25%+ inherited)	• MEN2	Every patient

- Most NENs are not hereditary- Most people who undergo testing will not have a germline mutation
 - EXCEPTIONS: 40% PPGL or 25% MTC (hereditary)
- Having a germline mutation doesn't mean you have cancer; it just means you have a higher risk for developing it
 - Allows us to implement a screening plan with the goal of identifying growths early, so they don't turn into something more dangerous.
- Not all patients with a germline alteration have a positive family history
- Not all tumors associated with genetic syndromes are malignant (some are benign)
- Genetic counselors can help guide you through germline testing, and review of results and screening recommendations

